

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

END-OF-SEMESTER EXAMINATION SEMESTER II, 2013/2014 SESSION KULLIYYAH OF ENGINEERING

Programme : Engineering

Level of Study: UG 1

Time

: 02:30 - 05:30PM

: 28/05/2014

Duration

: 3 Hour

Course Code

: ECE 1311

Section(s)

: All

Course Title

: Electric Circuits

This Question Paper Consists of FIVE (5) Printed Pages (Including Cover Page) with FIVE (5) Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- Total mark of this examination is 100.
- This examination is worth 50% of the total assessment.
- Answer all FIVE (5) questions. All questions carry equal marks.

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal

Question 1 [20 marks]

(a) The current flowing distribution through a device over 12 seconds of time is as shown in Fig. 1a. Find the charge flowing through the device over the interval 0-12 seconds.

(4 marks)

Fig. 1(a)

(b) Find the energy consumed by the device over a period of 12 hours, assuming its power rating is as shown in Fig. 1(b).

(4 marks)

(c) Use current division to find the current i_x in the circuit shown in Fig. 1(c). (6 marks)

Fig. 1(c)

(d) Use voltage division to find the voltage V_x in the circuit shown in Fig. 1 (d). (6 marks)

Fig. 1(d)

Question 2 [20 marks]

(a) Use nodal analysis to find v_1 , v_2 and v_3 in the circuit of Fig. 2(a). (10 marks)

Fig. 2(a)

(b) Find and draw the Thevenin's and Norton's equivalents looking into terminals *a-b* of the circuit shown in Fig. 2(b). What value of the resistor connected across terminals *a-b* will absorb maximum power from the circuit? Also determine the maximum power.

(10 marks)

Fig. 2(b)

Question 3 [20 marks]

(a) Find v_C , i_L , and the energy stored in the capacitor and inductor in the circuit of Fig. 3(a) under dc, steady-state conditions. (10 marks)

Fig. 3(a)

(b) For the following pairs of sinusoids, determine which one leads and by how much?

(5 marks)

$$v_1(t) = 50 \cos(112t + 10^\circ)$$
 and $v_2(t) = -20 \cos 112t$

(c) A parallel RLC circuit has the node equation

$$\frac{dv}{dt} + 50v + 100 \int v dt = 110 \cos(377t - 10^\circ)$$

Determine v(t). You may assume that the value of the integral at $t = -\infty$ is zero. (5 marks)

Question 4 [20 marks]

(a) In the circuit of Fig. 4(a), find equivalent impedance (Z_{eq}) at the terminals a-b. Assume ω =20 rad/s. (10 marks)

Fig. 4(a)

(b) Using mesh analysis, find I_1 and I_2 in the circuit of Fig. 4(b).

(10 marks)

Fig. 4(b)

Question 5 [20 marks]

(a) Determine v_{θ} in the circuit of Fig. 5a using superposition.

(10 marks)

Fig. 5(a)

(b) For the circuit of Fig. 5(b), calculate:

- (10 marks)
- i. The power factor. State whether it is leading or lagging.
- ii. The average power delivered by the source
- iii. The reactive power
- iv. The apparent power
- v. The complex power

Fig. 5(b)